
ConfigChecker

Table of contents

1 Home..2

2 Guides.. 4

3 References..7

4 Examples..40

5 Try and Buy... 40

Copyright © 2005-2014 Caprica Limited All rights reserved.

1. Home

1.1. ConfigChecker

1.1.1. Introduction

ConfigChecker is a tool to analyze the numerous configuration settings of a software system
and report the current configuration values or detect misconfiguration.

Essentially the tool can do two things:

1. Report the current configuration settings
2. Check the current configuration against an instruction set which defines what is expected

and report the differences

A major strength of ConfigChecker is its capability to extract configuration settings from
various sources.
For example it can read or check values in

• Plain text files
• XML files
• Java properties files
• Java manifest files
• Windows ini files
• Windows registry
• Apache conf files
• LDIF files

Get the trial version and see yourself what ConfigChecker can do for you.

1.2. ConfigChecker - History of Changes

1.2.1. Version 2.0

New data source adapter:

• Databse (not in trial version)
• WinRegistry (not in trial version)

New assertion commands:

• AssertMatchAll
• AssertMatchOneOf

ConfigChecker

Page 2
Copyright © 2005-2014 Caprica Limited All rights reserved.

Other features:

• Supports now <ValueList> as sub-tag of <AssertOneOf>
• Command <SetFrom> now supports an attribute default
• New pre-defined variable OS_FAMILY which containes the operating system family (i.e.

"windows", "unix", "mac")
• In <ReportBlock> two new attributes for conditional execution are available:

beforeVersion, sinceVersion
• In the element attribute of commands it is now possible to specify a variable name

instead of a data source adapter specific element description path.

Dependencies:

• Now requires JRE 1.5 or later
• Now based on pf.jar 4.0.1

Bugfixes:

• Placeholders in <Value> elements have not been replaced
• NullPointerException if a cci without instructions file was included
• Commands AssertMatch, AssertContains, AssertOneOf didn't support the not-attribute
• Empty settings were not handled correctly
• Empty tags in XML files were not found
• Variable LAST_ASSERTION_RESULT was always true for optional="true" if element

was not found

1.2.2. Version 1.0

Supported Data Source Adapter:

• SettingsFile
• XmlFile
• HttpdConfFile
• TextFile
• FileSystem
• SettingsObject
• LdifFile

Supported assertion commands:

• AssertExistence
• AssertEquals
• AssertLess
• AssertGreater

ConfigChecker

Page 3
Copyright © 2005-2014 Caprica Limited All rights reserved.

• AssertLessOrEqual
• AssertGreaterOrEqual
• AssertContains
• AssertMatch
• AssertOneOf
• AssertNewLine

Supported control commands:

• Include
• Set
• SetFrom
• SetFromFile
• ReportVariable
• ReportValue
• ReportBlock
• ForEach
• ForFiles

Supported reports:

• Minimum XML report that contains only output messages
• Default XML report with and output section
• Extended XML report with header, input and output sections
• Full XML report with header, plug-in list, input and output sections

Other features:

• Bundle with utility Start Script Shell Generator
• Automatic location of files inside zipped files
• Remote access to files via http
• Variables/Placeholders
• Automatic authentication
• Pluggable data source adapters and assertion commands

2. Guides

2.1. ConfigChecker

2.1.1. Guides

Find here information about

ConfigChecker

Page 4
Copyright © 2005-2014 Caprica Limited All rights reserved.

• Installation
• Usage

2.2. ConfigChecker - Install Guide

2.2.1. Installation

Installation of ConfigChecker is very easy. Just follow these steps:

• Create a new directory wherever you want
• Unzip the contents of configchecker.zip into this new directory
• Ensure that the environment variable JAVA_HOME points to an existing JRE 1.5.x

directory (e.g. c:/programs/java1.5.0/jre)
• Generate a shell script that enables invocation of ConfigChecker from any directory (see

below)

To learn about how to start ConfigChecker see Usage.

2.2.2. Start Script Shell Generator

There is a little utility program bundled with ConfigChecker called Start Script Shell
Generator. The purpose of this tool is to generate a shell script (according to the current
operating system) that allows to run ConfigChecker from everywhere in the system without
being forced to change the current path or explicitly specify a classpath or modify any
environment variables.

To use it just run:
java -jar pf-sssgen.jar -f configchecker.jar
(under Windows you also can use the sssgen.bat instead)
This generates a run.bat or run.sh depending on the operating system.

To get help about the start parameters of Start Script Shell Generator just call it without any
parameter.

2.3. Usage

2.3.1. Command-line Parameters

ConfigChecker understands the following command line options which can be specified in
any order.

-i filename
Specifies the file that contains the instructions to be executed. This start

ConfigChecker

Page 5
Copyright © 2005-2014 Caprica Limited All rights reserved.

parameter is required.
-o filename
Specifies the file to which the output (i.e. the report) must be written. This start
parameter is optional. If omitted the report will be written to stdout.
-v filenames
Specifies the name of one ore more properties files that contain initial variable
definitions. Separate multiple files with the OS path separator (';' for Windows
and ':' for Unix). The files are loaded in the order as specified from left to right.
This start parameter is optional. These files can be used to define variable
values that are referred to in the instructions set. That simplifies re-using the
same instruction set(s) in slightly different environments.
-var
Specifies one ore more variable definitions as name/value pairs. Name and value
must be separated by '='. Multiple variables must be separated by the OS path
separator (';' for Windows and ':' for Unix). The variables specified with this
parameter will be set after the loading of the properties files specified by
parameter -v. This start parameter is optional.
-xsl [filename]
Specifies that the generated report should contain a processing instruction for an
XSL style-sheet. That allows to display it immediately in a browser. The optional
filename specifies the XSL file to refer to. If no filename is given then the default
cocheck_default.xsl is used. If necessary it will be copied automatically to the
same folder as the XML report. So the XML report can be rendered if opended in
a browser. This start parameter is optional.
-html
If defined an HTML version of the report will be created. This is only possible if -o
and -xsl are set too. This start parameter is optional.
-rm
Minimum report. Only the <Output> section will be reported. This start parameter
is optional.
-rd
Default report. Only the <Header> and <Output> sections will be reported. This
start parameter is optional.
-re
Enhanced report. The <Header> and <Intput> and <Output> sections will be
reported. This start parameter is optional.
-rf
Full report. All available data will be reported. This start parameter is optional.
-q

ConfigChecker

Page 6
Copyright © 2005-2014 Caprica Limited All rights reserved.

Sets the quiet mode. That is, no processing monitor window will be shown. This
could be useful on Unix servers where no GUI components are supported. This
start parameter is optional.
-no
Specifies to write no output. Usually that is only useful if ConfigChecker is used
embedded inside another application. This start parameter is optional.
-a filename
Specifies a file that contains authentication credentials for particular URLs or
realm. This start parameter is optional. If a remote file with a protected URL is to
be worked on, ConfigChecker can automatically authenticate if the credentials
are specified in the file specified with the -a option.

3. References

3.1. Instruction File Reference

Here you will find the detailed description of all commands that can be used in an instruction
set to control the reportig and/or checking of a system.

The reference is split up into the following categories:

• Using variables
• General control commands
• Reporting commands
• Data Source Adapter commands
• Assertion commands

3.2. Variables

3.2.1. Variables

In all text and attribute values of an instruction file variables can be used. That makes
instruction files very flexible and independent of a particular environment.
Usually variables should be used if

• the same value is needed at several places in the instruction file
• the value has to be changed more frequently than the instruction file logic itself
• the location of files should variable and not fixed to a particular environment

3.2.1.1. Variables as Placeholder

If a variable is used as placeholder in an attribute value or the text of an XML tag then its

ConfigChecker

Page 7
Copyright © 2005-2014 Caprica Limited All rights reserved.

name must be enclosed in curly braces.
At execution time the placeholder will be replaced by the current value assigned to the
variable name.

Example:

<Set name="color" value="red"/>
<ReportBlock message="The preferred color is {color}"/>

This example produces the following tag in the output document.

<Block message="The preferred color is red"/>

3.2.1.2. Checking the Values of Variables

It is also possible to apply all assertion commands on the value of variables.
Therefore the variable name with prefix character '^' must be specified in the element
attribute of the assertion command.

Example:

<AssertMatch element="^redirect.url">https://*</AssertMatch>

3.2.1.3. Variable Names

Variables can consist of the following characters only:

a-z A-Z 0-9 . _ - $

Other characters are not allowed and will cause an error with msgid="SERR003".

3.2.1.4. Predefined Variables

There are two variables that are always present during the execution of ConfigChecker.

CONFIGCHECKER_VERSION
Contains the version number (e.g. "2.2.0") of the ConfigChecker that is currently
executed (this is not available in ConfigChecker versions before 2.2.0).
Example:

<ReportBlock
sinceVersion="{CONFIGCHECKER_VERSION}:2.2.0">...</ReportBlock>

INSTRUCTION_DIR
Contains the absolute directory path of the instruction file (i.e. "*.cci" file) that was

ConfigChecker

Page 8
Copyright © 2005-2014 Caprica Limited All rights reserved.

passed to ConfigChecker with the -i start parameter.
Usually that is very helpful to be used in <Include> commands if the cci file to be
included is located in the same directory or a sub directory of where the main cci
file is.
Example:

<Include>{INSTRUCTION_DIR}/server_checks.cci</Include>

LAST_ASSERTION_RESULT
This variable always contains the result of the last executed assertion. That is, its
value is either "true" or "false". Before the first assertion its value is "true".
This variable can be used to control further execution depending on the result of
an assertion.
Lets say for example, that the properties of a particular properties file should only
be checked if the value of a particular element in an XML configuration file equals
"enabled".

<XmlFile name="server_cfg.xml">
<AssertEquals

element="//Connection[@name='backup']/@remote">enabled<AssertEquals/>
</XmlFile>
<ReportBlock if="{LAST_ASSERTION_RESULT}=true">
<SettingsFile type="properties" name="remote.properteis">
<AssertEquals element="port">7265<AssertEquals/>
<AssertGreater element="max.threads">15<AssertGreater/>

</SettingsFile>
</ReportBlock>

OS_FAMILY
This variable gets automatically set to one of the following values:
• "windows"
• "unix"
• "mac"

It can be used in if and ifNot attributes of the Include and ReportBlock commands
to achieve operating system dependant execution control.

Example:

<Include if="OS_FAMILY='unix'">other_unix.cci</Include>

For the exact operating system name the Java system property os.name can be
used.

Apart from these variables there are other predefined variable names that are defined by
particular command.

ConfigChecker

Page 9
Copyright © 2005-2014 Caprica Limited All rights reserved.

For details see the command description of

• <ForEach>
• <ForFiles>

3.2.1.5. Scope of Variables

Variables can have a value in global and local.
The global scope is outside a Data Source Adapter tag.
The local scope is inside a Data Source Adapter tag.
If a value has been assigned to a variable in global as well as in local scope then the
corresponding placeholder is always replaced by the local value.
That means, the local value always overrides the global value as long as the execution is
inside the Data Source Adapter tag where the local variable has been set.
When execution reaches the end of a Data Source Adapter tag then the local values of these
variables are all removed.

3.2.1.6. Ways to set Variables

There are many different ways to set the value of a variable.

1. Providing one or multiple properties files with start parameter -v (see Usage). The
separator between the filenames is the OS specific path separator (':' for Unix and ';' for
Windows). That loads all properties from the specified files as variables into
ConfigChecker. The files are loaded from left to right. That implies, that later loaded files
may override variables that have been set by previously loaded files.

2. Specifying name/value pairs files with start parameter -var (see Usage). These variables
are set after the loading of properties files with parameter -v. That allows overriding
particular variables that have been set by the properties files.

3. Loading a properties file with the command <SetFromFile> from within an instruction
set. This also loads all properties from the specified file as variables into ConfigChecker.

4. Using the command <Set> in an instruction set. This command's purpose is to assign a
value to a variable.

5. Using the command <SetFrom> within an instruction set. This command's purpose is to
assign a value from a configuration element to a variable.

6. All AssertXXX commands support an attribute resultVar. It allows to assign the
assertion's result (true|false) to a variable with the name specified in that attribute. The
scope of this variable can be set with the scope attribute.

7. The <ForEach> also sets a variable. That is either the default variable name "_EACH_"
or the variable specified by its name attribute. The scope is always determined from the
context the command is used in.

8. Since all Java system properties are generally available as variables for ConfigChecker it

ConfigChecker

Page 10
Copyright © 2005-2014 Caprica Limited All rights reserved.

is also possible (but not recommended) to use the -D option with the JVM execution to
set a variable.
The better way is using start-parameter -var.

3.3. Control Commands

3.3.1. Control Commands

3.3.1.1. Include

The purpose of this command is to include another instruction file at exactly the point where
this command is invoked. The Include command cannot be put inside a Data Source Adapter.
It can only be used directly under Instructions or one of the following control commands if
they are directly placed under Instructions.

• ReportBlock
• ForEach
• ForFiles

Attribues

The following table lists all attributes that can be used with the Include command.

Attribute Name Description required/optional

if The specified file will only be
included if the condition in this
attribute is true.
Here true means actually any
of the following string values:
• true
• yes
• on
• 1

optional

ifNot The specified file will only be
included if the condition in this
attribute is NOT true. For a
description of the syntax of
conditions see the if attribute.

optional

beforeVersion The inclusion of the specified
file will only be executed if the
condition in this attribute is true.
The condition specifies the
name of a variable and a

optional

ConfigChecker

Page 11
Copyright © 2005-2014 Caprica Limited All rights reserved.

version number. The value of
the variable then will be
compared against the version
number. The condition
evaluates to true if the version
value of the variable is a lower
version than the specified
value.
The variable name and the
version to compare with must
be separated by a colon (':').
Example:
beforeVersion="build.version:4.3.28"
The following values for
variable build.version will
evaluate the example to true:
• 1.0.45
• 4.3.27
• 4.2

The following values for
variable build.version will
evaluate the example to false:
• 5.1.3
• 4.3.28
• 4.10.2
• 12.2.7
• 4.3.102

sinceVersion The inclusion of the specified
file will only be executed if the
condition in this attribute is true.
The condition specifies the
name of a variable and a
version number. The value of
the variable then will be
compared against the version
number. The condition
evaluates to true if the version
value of the variable is a higher
or equal version compared to
the specified value.
The variable name and the
version to compare with must
be separated by a colon (':').
Example:
sinceVersion="build.version:3.21.7"
The following values for

optional

ConfigChecker

Page 12
Copyright © 2005-2014 Caprica Limited All rights reserved.

variable build.version will
evaluate the example to true:
• 3.0
• 3.21.7
• 3.21.11
• 11.0.1
• 3.123.2

The following values for
variable build.version will
evaluate the example to false:
• 2.4.5
• 3.21.6
• 3.20.46.5

Examples

Example Description

<Include>/base/instructions/check12.cci</Include> Inserts all commands from the instructions file
named /base/instructions/check12.cci

<Include
if="servername='mx500'">{INSTRUCTION_DIR}/mx500_checks.cci</Include>

If the variable servername contains the value
mx500 then (and only then) the file
mx500_checks.cci from the base directory for
instruction files will be included.

<Include sinceVersion="build-version:3.5.1"
beforeVersion="build-version:5.2.0">{INSTRUCTION_DIR}/core_checks.cci</Include>

If the variable build.version a version that is
equal or higher than 3.5.1 and lower than 5.2.0
then (and only then) the file core_checks.cci
from the base directory for instruction files will
be included.

3.3.1.2. ForEach

The purpose of this command is to repeat all enclosed instructions for all values specified in
this command.

Attribues

The following table lists all attributes that can be used with this command.

Attribute Name Description required/optional

name Specifies the name of the
variable that contains the
current value of the value list
for each iteration.

optional

ConfigChecker

Page 13
Copyright © 2005-2014 Caprica Limited All rights reserved.

If this attribute is not defined
the default variable name
EACH will be used.
See the Variables page to find
out what characters are
allowed in variable names.

values Contains the list of values for
which to loop over the enclosed
instructions. For each value in
this list the enclosed
instructions will be executed
once.

required

separator Defines the separator in the list
of values. If this attribute is not
specified the default separator
(i.e. comma ',') is used.

optional

Examples

<ForEach name="filename" values="test.jar:sample.jar:util.jar"
separator=":">
<FileSystem>

<AssertExistence label="{filename}"
element="/testdata/lib/{filename}"/>
</FileSystem>

</ForEach>

Description: For each JAR file listed in the values attribute it will be checked if it exists in
the directory /testdata/lib.

3.3.1.3. ForFiles

The purpose of this command is to iterate over a set of files or directories and execute all
enclosed instructions for each file/directory found.

This command always sets some variables for each iteration (i.e. for each found file).

ABSFILENAME
Contains the absolute filename of the current iteration's file.
ABSDIRNAME
Contains the absolute directory name (i.e. without the file's name) of the current
iteration's file.
RELFILENAME
Contains the relative file path of the found file. That is relative to the defined start

ConfigChecker

Page 14
Copyright © 2005-2014 Caprica Limited All rights reserved.

directory in attribute dir.
RELDIRNAME
Contains the relative directory path of the found file. That is relative to the defined
start directory in attribute dir.
FILENAME
Contains the filename without any path information.
DIRNAME
Contains the relative directory path of the found file. That is relative to the current
work directory.

Attribues

The following table lists all attributes that can be used with this command.

Attribute Name Description required/optional

dir Specifies the directory from
where to start searching for
files matching the given
pattern.
If not set the search starts in
the current working directory.

optional

pattern Contains one or more name
patterns that specify the filter
for the files iterate over.
A pattern can contain '*' for any
number of any character and '?'
for single occurance of any
character.
If more than one pattern is
needed they must be separated
by ';'.

required

recursive Defines whether or not the file
search should go recursivly
throgh all sub directories.
If not set the default value is
"false".

optional

digit Allows to specify a single
wildcard character that
represents a digit (i.e. 0-9).
Usually '#' is used for this
purpose, but any other
character can be used as well.

optional

ConfigChecker

Page 15
Copyright © 2005-2014 Caprica Limited All rights reserved.

dirsOnly If this attribute is set to "true"
(or "yes, "on", "1") then the
command iterates over
directories rather than files.
If not set the default value is
"false".

optional

Examples

<ForFiles dir="configuration/local" pattern="*.properties"
recursive="true">
<FileSystem>
<ReportValue label="Timestamp of {_FILENAME_}"

element="{_ABSFILENAME_}|@lastModified"/>
</FileSystem>

</ForFiles>

Description: For each found properties file the corresponding timestamp of its last
modification gets reported.

<ForFiles pattern="*.html" dir="stats" recursive="yes">
...

</ForFiles>

Description:

Assuming that the current directory is c:/temp and the file
c:/temp/stats/january/access.html was found with the above command
then the variables will have the folowing values:

ABSFILENAME c:/temp/stats/january/access.html
ABSDIRNAME c:/temp/stats/january
RELFILENAME january/access.html
RELDIRNAME january
FILENAME access.html
DIRNAME stats/january

3.3.1.4. Set

The purpose of this command is to set the value of a variable. It can be used everywhere in
an instruction file.
Each setting of a variable overwrites the previous value.
Since variables can have a global and a local scope it is possible to specify the scope with
this command. However, it is only reasonable to use this feature when setting a global
variable's value from inside a local context (i.e. from inside a data source adapter).

ConfigChecker

Page 16
Copyright © 2005-2014 Caprica Limited All rights reserved.

Attribues

The following table lists all attributes that can be used with this command.

Attribute Name Description required/optional

name Specifies the name of the
variable to be set.
See the Variables page to find
out what characters are
allowed in variable names.

required

value Any text of any size. Can even
be an empty value.

required

scope The scope can either be
"global" or "local". If omitted it
will be determined from the
current context. That is, if the
command is executed in a local
context (i.e. inside a data
source adapter tag) then the
scope by default is "local",
otherwise "global".

optional

Examples

<Set name="basePath" value="sample/data/config"/>

Description: Sets the variable basePath to the current value sample/data/config.

<Set name="server.hostname" value="target.example.com" scope="global"/>

Description: Sets the global variable server.hostname to the current value
target.example.com.

3.3.1.5. SetFrom

The purpose of this command is to assign the value of a configuration element to a variable.

Note:
This command must be used only inside a Data Source Adapter tag.

By default the variable is treated as local if not explicitly specified differently.

ConfigChecker

Page 17
Copyright © 2005-2014 Caprica Limited All rights reserved.

Attribues

The following table lists all attributes that can be used with this command.

Attribute Name Description required/optional

name Specifies the name of the
variable to be set.
See the Variables page to find
out what characters are
allowed in variable names.

required

element The element from which to
retrieve the value that should
be assigned to the variable.
The syntax of this attribute
depends on the Data Source
Adapter inside this command is
used. Refer to the
documentation of the
appropriate Data Source
Adapter.

required

scope The scope can either be global
or local. If omitted it will be
local.

optional

range If the specified element returns
more than one value then the
range attribute can be used to
specify which value(s) assign to
the variable. Valid definitions
for range are all or first or last.
If omitted it will be all.

optional

separator If for multiple values the range
was set to all then this attribute
can be used to define the
separator between the values.
If omitted the separator will be
','.

optional

default Allows to specify a default
value which will be assigned to
the variable if the speified
element cannot be found.
If this attribute is omitted and
the element cannot be found

optional

ConfigChecker

Page 18
Copyright © 2005-2014 Caprica Limited All rights reserved.

then an error will added to the
result report.

Examples

<SettingsFile type="properties" name="base.properties">
<SetFrom name="color_config_file" element="color.definitions"

scope="global"/>
</SettingsFile>
<SettingsFile type="ini" name="{color_config_file}">
<ReportValue element="[Dialogs]/background"/>

</SettingsFile>

Description: Reads the filename of the ini-file that contains color configurations from
property color.definitions in file base.properties and assigns it to variable color_config_file.
Then it reports the current value of the [Dialogs]/background setting in this ini-file.

3.3.1.6. SetFromFile

With this command it is possible to load a set of variables from a properties file.
By default the loaded variables are added to the variable scope the command is executed in.
Only if the command is running inside a Data Source Adapter (i.e. in local scope) it is
possible to specify to load the variables to the global scope anyway.

Attribues

The following table lists all attributes that can be used with this command.

Attribute Name Description required/optional

file Specifies the name of the
properties file from which to
read the variables.

required

scope The scope can either be global
or local. If omitted it will be the
current execution scope.

optional

Examples

<SetFromFile file="set2.properties" scope="global"/>

Description: Reads all properties into the global variable pool. If some of the variables
already exist their value will be modified.

ConfigChecker

Page 19
Copyright © 2005-2014 Caprica Limited All rights reserved.

3.4. Report Commands

3.4.1. Report Commands

The purpose of these commands is to explicitly write something to the report. Usually (with
assertion commands) only a failed assertion is reported in the output document. The
commands explained here are used to add more data and arbitrary text to the output.

3.4.1.1. ReportBlock

This command can be used everywhere in an instruction file. It can be indefinitly nested and
can always contain all tags its parent tag would allow. The effect of ReportBlock is that in
the output file a corresponding output tag <Block> is added. The tag contains a copy of all
attributes from the ReportBlock command. So the ReportBlock can be used to add any
arbitrary text to the ouput file. Apart from that the <Block> in the output will also contain all
output tags corresponding to the inner tags of the ReportBlock instruction.

An additional feature is, that ReportBlock supports conditional execution of its inner tags.
With the attributes if and ifNot it is possible to make the execution of the inner tags
depending on the value of a variable or an even more complex expression.

Attribues

The following table lists all attributes that can be used with the ReportBlock command.

Attribute Name Description required/optional

if The inner tags of ReportBlock
will only be executed if the
condition in this attribute
evaluates to true.
Here true actually means any
of the following string values:
• true
• yes
• on
• 1

optional

ifNot The inner tags of ReportBlock
will only be executed if the
condition in this attribute is
NOT true. For a description of
the syntax of conditions see the
if attribute.

optional

ConfigChecker

Page 20
Copyright © 2005-2014 Caprica Limited All rights reserved.

beforeVersion The inner tags of ReportBlock
will only be executed if the
condition in this attribute is true.
The condition specifies the
name of a variable and a
version number. The value of
the variable then will be
compared against the version
number. The condition
evaluates to true if the version
value of the variable is a lower
version than the specified
value.
The variable name and the
version to compare with must
be separated by a colon (':').
Example:
beforeVersion="build.version:4.3.28"
The following values for
variable build.version will
evaluate the example to true:
• 1.0.45
• 4.3.27
• 4.2

The following values for
variable build.version will
evaluate the example to false:
• 5.1.3
• 4.3.28
• 4.10.2
• 12.2.7
• 4.3.102

optional

sinceVersion The inner tags of ReportBlock
will only be executed if the
condition in this attribute is true.
The condition specifies the
name of a variable and a
version number. The value of
the variable then will be
compared against the version
number. The condition
evaluates to true if the version
value of the variable is a higher
or equal version compared to
the specified value.
The variable name and the

optional

ConfigChecker

Page 21
Copyright © 2005-2014 Caprica Limited All rights reserved.

version to compare with must
be separated by a colon (':').
Example:
sinceVersion="build.version:3.21.7"
The following values for
variable build.version will
evaluate the example to true:
• 3.0
• 3.21.7
• 3.21.11
• 11.0.1
• 3.123.2

The following values for
variable build.version will
evaluate the example to false:
• 2.4.5
• 3.21.6
• 3.20.46.5

Examples

Example Description

<ReportBlock label="First test set">
<AssertExistence element="....."/>

</ReportBlock>

Simply creates a <Block> element in the output
around the report results of the included child
elements.

3.4.1.2. ReportVariable

The purpose of this command is to write the current value of a variable to the output.

Attribues

The following table lists all attributes that can be used with this command.

Attribute Name Description required/optional

name Specifies the name of the
variable to be reported.
The specified variable must
exist. Otherwise an error
msgid="SERR002" will
reported.

required

ConfigChecker

Page 22
Copyright © 2005-2014 Caprica Limited All rights reserved.

Examples

<Set name="title" value="Example"/>
<SettingsFile type="properties" name="config.properties">
<Set name="title" value="inside"/>
<ReportVariable name="title"/>

</SettingsFile>
<ReportVariable name="title"/>

Description: The first <ReportVariable> command will add

<Variable name="title">inside</Variable>

and the second <ReportVariable> command will add

<Variable name="title">Example</Variable>

to the output report file.

3.4.1.3. ReportValue

With this command it is possible to write the current value(s) of a configuration element to
the report.

Note:
This command must be used only inside a Data Source Adapter tag.

Attribues

The following table lists all attributes that can be used with this command.

Attribute Name Description required/optional

element Specifies the element to be
reported.
Be aware that the syntax of this
attribute depends on the Data
Source Adapter this command
is used with. Refer to the
appropriate Data Source
Adapter documentation for
details.

required

Examples

ConfigChecker

Page 23
Copyright © 2005-2014 Caprica Limited All rights reserved.

<SettingsFile type="manifest" name="base.jar/META-INF/MANIFEST.MF">
<ReportValue element="Specification-Title"/>
<ReportValue element="Specification-Version"/>
<ReportValue element="Specification-Vendor"/>

</SettingsFile>

Description: Writes the values of the "Specification" settings in the manifest file of base.jar
to the report.

3.5. Assertion Commands

3.5.1. Common Attributes

The following table lists all attributes the assertion commands have in common. However,
keep in mind that particularly the syntax of the element attribute depends on the Data Source
Adapter it is used with.

Apart from these common attributes each assertion command might have additional
attributes that are specific for a particular Data Source Adapter. If such attributes exist they
are documented with the corresponding Data Source Adapter.

Attribute Name Description required/optional

id A unique identifier which will
also be written to the report. It
can be set to any value. Its
main purpose is to associate a
message in the report to its
originating instruction in the
instruction set. That allows
easy tracking which reported
value belongs to which
instruction command.

optional

label Sometimes the element's
identifier is not quite human
readable. In such a case it
could be useful to define the
label attribute with a name that
a human being can understand.
The contents of the label
attribute is always copied
unchanged to the report.

optional

element The identifier for the element to
check or report.

required

ConfigChecker

Page 24
Copyright © 2005-2014 Caprica Limited All rights reserved.

Note:
The syntax of this attribute
depends on the Data Source
Adapter it is used with. For an
XML based Data Source
Adapter that could be an
XPath expression, for a Java
properties file just a simple
property name.

not If this attribute is set to "true"
(or "yes, "on", "1") then the
result gets negated. That's a
simple way to express that
something is expected not to
be as specified.

optional

optional If this attribute is set to "true"
(or "yes, "on", "1") then the
check is optional. That is, in
case that the element cannot
be found at all then this is not
reported as an error or failure.
However, if the element was
found the check gets executed
as usual and reports a failure if
it wasn't successful.

optional

useSlashes If this attribute is set to "true"
(or "yes, "on", "1") then all
backslashes in the found
element's data will be
translated into forward slashes.
The default is "no".

optional

resultVar If this attribute is set then the
value of the assertion ("true" or
"false") will be set to a variable
with the name specified in this
attribute.
Whether the variable is "local"
or "global" depends on the
scope attribute.

optional

scope Defines the scope of the
variable name defined by
attribute resultVar. The scope
can either be "global" or "local".

optional

ConfigChecker

Page 25
Copyright © 2005-2014 Caprica Limited All rights reserved.

The default is "local".

skipReporting If this attribute is set to "all" or
"failure" or "error" then the
outcome of the assertion might
not be added to the report.

all
Neither error nor failure will
be reported
failure
The failure of the assertion
will not be reported
error
An error during the
assertion will not be
reported

This option particularly makes
sense in conjunction with the
attribute resultVar so that the
asstion result will be stored into
a variable rather than causing a
report entry.
The default is "false".

optional

3.5.2. Common Child Elements for Multiple Values

The purpose of the following elements is to specify multiple values to check the found
value(s) against.
There are several assertion commands that do not just check against a single pre-defined
value but against a whole set of values.

Both elements can occur multiple times in any order. All their values are collected into a set
which the found element(s) will be checked against.

Element Name Description

Value Specifies one value to check against.

ValueList Specifies a list of values where the comma
character is used as separator. However, the
separator can be changed by setting the
attribute separator to the character that should
be used to delimit the single values in the list.

Example:

ConfigChecker

Page 26
Copyright © 2005-2014 Caprica Limited All rights reserved.

<Assert...... element="...">
<Value>200</Value>
<Value>500</Value>
<ValueList>330,340,350,380</ValueList>
<Value>700</Value>
<ValueList

separator="|">1000|2000|9000|11000|{number_list}</ValueList>
</Assert......>

3.5.3. Commands

Note:
The following five commands automatically do an integer comparison if both, the expected and the actual value can be
converted to integers. Otherwise, a string comparison is done.

• AssertEquals
• AssertGreater
• AssertGreaterOrEqual
• AssertLess
• AssertLessOrEqual

3.5.3.1. AssertEquals

The purpose of this command is to check whether or not the value of the specified element is
equal to the value specified in the body this command. If the element's value is not equal to
the specified value then a failure message (msgid="FAIL0001") is written to the report.

Attributes

This command supports all the common attributes.

Example

<AssertEquals id="CHECK78" element="MaxConnections">25</AssertEquals>

Description: If the element MaxConnections ist not 25 then an assertion failure message will
be written to the report.

<AssertEquals label="Server Name"
element="//Config/server[@id='M19']/host/@fqdn">
www.testserver.com

</AssertEquals>

ConfigChecker

Page 27
Copyright © 2005-2014 Caprica Limited All rights reserved.

Description: If the element (i.e the server name) that is specified by the XPath expression is
not www.testserver.com then an assertion failure message will be written to the report.

3.5.3.2. AssertLess

The purpose of this command is to check whether or not the value of the specified element is
less than the value specified in the body of this command. If the element's value is not less
than the specified value then a failure message (msgid="FAIL0002") is written to the
report.

Attributes

This command supports all the common attributes.

Example

<AssertLess id="L210" label="Limit LDAP search result"
element="searchLimit">1000</AssertLess>

Description: If the element SearchLimit ist not less than 1000 then an assertion failure
message will be written to the report.

3.5.3.3. AssertGreater

The purpose of this command is to check whether or not the value of the specified element is
greater than the value specified in the body of this command. If the element's value is not
greater than the specified value then a failure message (msgid="FAIL0003") is written to
the report.

Attributes

This command supports all the common attributes.

Example

<AssertGreater id="GR09" element="port">9000</AssertGreater>

Description: If the element port ist not greater than 9000 then an assertion failure message
will be written to the report.

<AssertGreater element="Specification-Version">F<AssertGreater>

ConfigChecker

Page 28
Copyright © 2005-2014 Caprica Limited All rights reserved.

Description: If the element Specification-Version is not greater than F then an assertion
failure message will be written to the report.

3.5.3.4. AssertLessOrEqual

The purpose of this command is to check whether or not the value of the specified element is
less or equal compared to the value specified in the body of this command. If the element's
value is not less than or equal to the specified value then a failure message
(msgid="FAIL004") is written to the report.

Attributes

This command supports all the common attributes.

Example

<AssertLessOrEqual element="logLevel">3</AssertLessOrEqual>

Description: If the element logLevel ist not 3 or less then an assertion failure message will
be written to the report.

<AssertLessOrEqual label="Max memory usage"
element="memory">1024<AssertLessOrEqual>

Description: If the element memory is not greater than 1024 then an assertion failure
message will be written to the report.

3.5.3.5. AssertGreaterOrEqual

The purpose of this command is to check whether or not the value of the specified element is
greater or equal compared to the value specified in the body of this command. If the
element's value is not greater than or equal to the specified value then a failure message
(msgid="FAIL005") is written to the report.

Attributes

This command supports all the common attributes.

Example

<AssertGreaterOrEqual element="open.files">8</AssertGreaterOrEqual>

ConfigChecker

Page 29
Copyright © 2005-2014 Caprica Limited All rights reserved.

Description: If the element open.files ist not 8 or greater then an assertion failure message
will be written to the report.

<AssertGreaterOrEqual element="//product[@name='tools']/@patch-level">
4

<AssertGreaterOrEqual>

Description: If the element //product[@name='tools']/@patch-level is not greater than 4
then an assertion failure message will be written to the report.

3.5.3.6. AssertExistence

The purpose of this command is to check whether or not the specified element exists. If the
element does not exist then a failure message (msgid="FAIL0006") is written to the report.

Attributes

This command supports all the common attributes and additionally the following:

Attribute Name Description required/optional

emptyExists If this attribute is set to "yes",
an existing setting with an
empty value is accepted as
existing. If set to "no", such an
empty value will cause a
configuration failure message.
If the attribute is not explicitly
set the default value is "yes".

optional

Example

<AssertExistence label="proxy module"
element="LoadModule[@1='proxy_module']/@2"/>

Description: Asserts that the LoadModule proxy_module with a second parameter exists. If
not a failure message is added to the report.

3.5.3.7. AssertMatch

With this command a value can be checked against a simple pattern. The pattern can be any
string. In such a pattern the characters '*', '?' and '#' have specials meanings. The '*' stands for
any number and any character. The '?' represents any single occurance of an arbitrary
character. The '#' represents a single digit (i.e. 0-9). If the element does not match the pattern

ConfigChecker

Page 30
Copyright © 2005-2014 Caprica Limited All rights reserved.

then the failure message (msgid="FAIL0008") is added to the report.

Attributes

This command supports all the common attributes.

Example

<AssertMatch id="D420" label="Mail address"
element="[cn=jdoe,ou=users,dc=company]/@mail">*.*@*.*</AssertMatch>

Description: If the LDAP element with the distinguished name
cn=jdoe,ou=users,dc=company must have an attribute named mail with a typical eMail
address value that is matching the pattern *.*@*.*. The value john.doe@company.com will
be fine but the value jdoe@company.com will cause an assertion failure message being added
to the report.

3.5.3.8. AssertContains

This command allows to treat the value of elements as a list of values. It can assert that a
particular value is in such a list. The default separator for the list elements is comma (','). If
the list value does not contain the expected value then the failure message
(msgid="FAIL0009") is added to the report.

Attributes

This command supports all the common attributes.

Example

<AssertContains id="ABC" label="Italian"
element="supported.languages" case-sensitive="no">it</AssertContains>

Description: If the property supported.languages doesn't contain the value "it" (case
insensitive comparison) then a failure message gets reported.

3.5.3.9. AssertOneOf

This command allows to check if the value of an element is equal to at least one of a list of
allowed values. If the element's value is not equal to any of the allowed values then failure
message (msgid="FAIL0010") is added to the report.
The values to check against have to be specified by child elements <Value> and

ConfigChecker

Page 31
Copyright © 2005-2014 Caprica Limited All rights reserved.

<ValueList>.
Both child elements can be used as often as necessary and in arbitrary order. Find the
detailed description here.

Attributes

This command supports all the common attributes.

Examples

<AssertOneOf label="Language" element="current.language"
case-sensitive="no">
<Value>it</Value>
<Value>fr</Value>
<Value>de</Value>

</AssertOneOf>

<AssertOneOf label="Language" element="current.language"
case-sensitive="no">
<ValueList>it,fr,de</ValueList>

</AssertOneOf>

Description: Both examples are equivalent. They are checking if the property
current.language is "it" or "fr" or "de" (case insensitive comparison). If that is not the case
then a failure message is added to the report.

3.5.3.10. AssertMatchOneOf

This command is useful to check if the value of an element matches at least one of a list of
specified patterns. If the element's value does not match any of the defined patterns then
failure message (msgid="FAIL0018") is added to the report.
Currently only '*' and '?' are supported in patterns. Regular expressions are not yet
supported.
The values to check against have to be specified by child elements <Value> and
<ValueList>.
Both child elements can be used as often as necessary and in arbitrary order. Find the
detailed description here.

Attributes

This command supports all the common attributes.

Examples

ConfigChecker

Page 32
Copyright © 2005-2014 Caprica Limited All rights reserved.

<AssertMatchOneOf label="Port" element="redirect.url" case-sensitive="no">
<Value>http://*:8080/*</Value>
<Value>https://*:9443/*</Value>
<Value>http://*:81/*</Value>

</AssertMatchOneOf>

<AssertMatchOneOf label="Port" element="redirect.url" case-sensitive="no">
<ValueList

separator=";">http://*:8080/*;https://*:9443/*;http://*:81/*</ValueList>
</AssertMatchOneOf>

Description: Both examples are equivalent. They are checking if the property redirect.url
contains a URL with one of the port numbers "81" or "8080" or "9443". If that is not the case
then a failure message is added to the report.

3.5.3.11. AssertMatchAll

With this command it is possible to ensure that the value of an element matches all of a list
of specified patterns. If the element's value does not match any one of the defined patterns
then failure message (msgid="FAIL0016") will be added to the report.
If the assertion is negated (not="true") then failure message (msgid="FAIL0015") will be
added to the report if the found element's value matches at least one of the specified patterns.
Currently the wildcard characters '*' and '?' are supported in patterns. Regular expressions
are not yet supported.
The patterns to check against have to be specified by child elements <Value> and
<ValueList>.
Both child elements can be used as often as necessary and in arbitrary order. Find the
detailed description here.

Attributes

This command supports all the common attributes.

Examples

<AssertMatchAll not="true" label="Logo" element="image.main.logo"
case-sensitive="no">
<Value>*.gif</Value>
<Value>*.jpg</Value>
<Value>*.png</Value>

</AssertMatchAll>

<AssertMatchAll not="yes" label="Logo" element="image.main.logo"

ConfigChecker

Page 33
Copyright © 2005-2014 Caprica Limited All rights reserved.

case-sensitive="no">
<ValueList>*.gif,*.jpg,*.png</ValueList>

</AssertMatchAll>

Description: Both examples are equivalent. They are checking if the property image matches
none of the file name patterns "*.gif" or "*.jpg" or "*.png". If the property matches one of the
patterns then a failure message is added to the report.

3.5.3.12. AssertNewLine

This assertion command is only reasonable within a text file data source adapter. It can be
used to check the end-of-line characters in a text file. If at least one line is terminated by a
different one than the expected the failure message (msgid="FAIL0011") is added to the
report.

Attributes

Attribute Name Description required/optional

element The element name for this
assertion command must
always be EOL (i.e. "End Of
Line").

required

value The value attribute specifies
the expected line-end
character(s). Valid values are:
• "CR" -> carriage return
• "CRLF" -> carriage return/

line feed
• "LF" -> line feed
• "LFCR" -> line feed/carriage

return

required

Example

<AssertNewLine label="Unix style line end" element="EOL" value="LF"/>

Description: Checks all lines in a file to end with line-feed (LF) character. If any line has
different line-end character(s) then the assertion fails.

3.6. Data Source Adapter Commands

ConfigChecker

Page 34
Copyright © 2005-2014 Caprica Limited All rights reserved.

3.6.1. Data Source Adapter Commands

3.6.1.1. SettingsFile

This data source adapter can be used to work on files that contain settings specified by
key/value pairs. That is, Java properties files, Java manifest files and Windows ini files.

Attribues

The following table lists all attributes that can be used with this data source adapter.

Attribute Name Description required/optional

name Contains the name of the file to
work on.

required

type Specifies the the type of the
file. Currently the following
values are supported:
• properties
• manifest
• ini

required

Example

<?xml version="1.0" encoding="ISO-8859-1" ?>
<Instructions version="1">
<Set name="testdata.dir">testdata</Set>
<Set name="BasePath">{testdata.dir}/ini</Set>

<SettingsFile name="{BasePath}/sample1.ini" type="ini" label="Base
Configuration" id="I01" case-sensitive="no">

<AssertEquals id="AE01"
element="[Configuration]/Editor">notepad.exe</AssertEquals>

<AssertExistence id="AX01" element="[Packer]/InternalUnzip"/>
<ReportValue id="RV01" element="[Packer]/ZIP"/>
<AssertGreater id="AG01" element="[1280x1024

(8x16)]/divider">400</AssertGreater>
<ReportValue id="RV02" element="[1280x1024 (8x16)]/divider"/>

</SettingsFile>
</Instructions>

3.6.1.2. TextFile

This data source adapter can be used to check text files. In general it allows to search for
specific text lines in a file and check the found line(s) against a pattern.

ConfigChecker

Page 35
Copyright © 2005-2014 Caprica Limited All rights reserved.

Another useful feature is to check the line-end convention (i.e. LF or CRLF).

Attribues

The following table lists all attributes that can be used with this data source adapter.

Attribute Name Description required/optional

name Contains the name of the file to
work on.

required

3.6.1.3. XmlFile

The purpose of this data source adapter is to report or check values in XML files.

Attribues

The following table lists all attributes that can be used with this data source adapter.

Attribute Name Description required/optional

name Contains the name of the file to
work on.

required

Element Syntax

The element attribute in all enclosed commands must specify a valid XPath expression. With
such an expression the element is identifed that has to be checked or of which the current
value should be reported.

3.6.1.4. HttpdConfFile

With this data source adapter it is possible to check values in files that comply with the
Apache configuration file format as for example the httpd.conf of the Apache Web Server.

Attribues

The following table lists all attributes that can be used with this data source adapter.

Attribute Name Description required/optional

name Contains the name of the file to
work on.

required

Element Syntax

ConfigChecker

Page 36
Copyright © 2005-2014 Caprica Limited All rights reserved.

The element attribute in all enclosed commands must use the following syntax to identify an
element:

• Section::CommandName[@param='...']/@param
• CommandName/@param
• CommandName[@param='...']/@param
• CommandName

This is the same as CommandName/@1

Where Section is the (optional) section name which is enclosed <...> tags like XML.
CommandName is the command. It must always be specified. Finally param is the number of
the command's parameter (starting with 1).
If '*' is used for param then all parameters are treated as one string.

Example

<?xml version="1.0" encoding="ISO-8859-1" ?>
<Instructions version="1">
<Include>{INSTRUCTION_DIR}/defaults.cci}</Include>
<HttpdConfFile name="{RootPath}/httpd/sample1.conf">
<AssertEquals element="AccessFileName">.htaccess</AssertEquals>
<AssertEquals element="DirectoryIndex/@3">welcome.html</AssertEquals>
<AssertEquals

element="LoadModule[@1='proxy_module']/@2">modules/ApacheModuleProxy.dll</AssertEquals>
<AssertEquals element="Directory

''/usr/ApacheGroup/Apache/cgi-bin''::AllowOverride/@1">None</AssertEquals>
<ReportValue element="CustomLog/@*"/>

</HttpdConfFile>
</Instructions>

3.6.1.5. LdifFile

With this data source adapter it is possible to report and check values in LDIF files. It allows
to select one or more directory objects in the LDIF file by either a distinguished name (see
RFC 2253) or a search filter (not LDAP search query - RFC 2254).

Attribues

The following table lists all attributes that can be used with this data source adapter.

Attribute Name Description required/optional

name Contains the name of the file to
work on.

required

ConfigChecker

Page 37
Copyright © 2005-2014 Caprica Limited All rights reserved.

Element Syntax

The element attribute of all enclosed commands must use the following syntax to identify an
element:

• dn/@attrname
• [serach filter]/@attrname

The first variant identifies exactly one object by its distinguished name.
The second variant uses a search filter with a simple syntax. It uses attribute names of the
searched objects and compares them with static values. The following operators are
supported:

Operator Purpose Example

= string match name='Jo*'

+ AND name='Fred' +
surname='Flintstone'

| OR location='London' |
location='Paris'

! NOT country='US' + !
telephoneNumber='555*'

() grouping (a=7 | b=9) + (m='text' |
m='ascii')

In both variants the @attrname then is the name of the attribute of the found object(s) to be
reported or checked.

Example

<?xml version="1.0" encoding="ISO-8859-1" ?>
<Instructions version="1">
<LdifFile name="{RootPath}/ldif/sample1.ldif">
<AssertEquals element="uid=tmorris,ou=People,

dc=example,dc=com/@roomNumber">4117</AssertEquals>
<AssertOneOf element="[givenName='Gern'|sn='W*']/@location">
<Value>Santa Clara</Value>
<Value>Cupertino</Value>
<Value>Sunnyvale</Value>

</AssertOneOf>
<AssertMatch

element="[(sn='B*'|sn='F*')+!(sn='Burton'|sn='Fisher')]/@telephoneNumber">
+1 ### ### ####

</AssertMatch>

ConfigChecker

Page 38
Copyright © 2005-2014 Caprica Limited All rights reserved.

</LdifFile>
</Instructions>

3.6.1.6. FileSystem

The purpose of this data source adapter is to check/report the existence of files. It also allows
to refer to the "last modified" date or the size of a file.

Attribues

This data source adapter has no attributes.

Extra Command Attribues

The following table lists attributes that can be used with assertion or report commands when
used inside this data source adapter.

Attribute Name Description required/optional

format Specifies the date format for
the lastmodified field of a file.
Use "dd" for day, "MM" for
month and "yy" or "yyyy" for
year. If the time should also be
considered use "hh" for hours,
"mm" for minutes and "ss" for
seconds.
Examples: "MM/dd/yy",
"dd.MM.yyyy", "dd/MM/yyyy
hh:mm:ss"
Generally everything specified
for java.text.SimpleDateFormat
should work.

optional

Example

<?xml version="1.0" encoding="ISO-8859-1" ?>
<Instructions version="1">
<Set name="testdata.dir">/usr/ben/testdata</Set>
<Set name="BasePath">{testdata.dir}/config</Set>

<FileSystem>
<AssertExistence label="default configuration"

element="{BasePath}/default.cfg"/>
<ReportValue id="F99"

element="{BasePath}/sample.jar/base.properties|@lastmodified"/>
<AssertGreater

ConfigChecker

Page 39
Copyright © 2005-2014 Caprica Limited All rights reserved.

/install.log|@size">800</AssertGreater>
<ReportValue label="Size of install.log"

element="{BasePath}/install.log|@size"/>
<AssertGreaterOrEqual element="{BasePath}/install.log|@lastmodified"

format="dd.MM.yyyy">10.07.2004</AssertGreaterOrEqual>
</FileSystem>

</Instructions>

4. Examples

4.1. Examples

4.1.1. Tomcat 5 Environment

Here you can find an example of a ConfigChecker report and the corresponding
ConfigChecker instruction file that was used to create the report about an installation of
Tomcat 5.

• Tomcat 5 Installation: Instruction files tomcat5.cci and jar_info.cci => Report
(tomcat5.xml)

5. Try and Buy

5.1. How to get ConfigChecker

5.1.1. Trial Version

ConfigChecker is available for immediate download as a trial version.
The trial version is fully functioning but does not contain all data source adapters.

5.1.2. Full Version

In contrary the full version of ConfigChecker contains all data source adapters but cannot be
downloaded from this site.
It must be ordered from Caprica Ltd.

5.1.3. Instruction File Editor (Eclipse Plugin)

To simplify creation and editing of ConfigChecker instruction files (cci) there is an eclipse
plugin available for download. It supports content assist with help for the supported
instructions.

ConfigChecker

Page 40
Copyright © 2005-2014 Caprica Limited All rights reserved.

5.2. Trial Version

5.2.1. V2.2.0

Download

Included are the following data sourec adapters:

• SettingsFile
• XmlFile
• FileSystem

5.3. Full Version

5.3.1. Buy the full version of ConfigChecker

To purchase the full version of ConfigChecker please send an eMail to
orders@configchecker.com.
Please provide your postal address and the number of licenses you want to buy.
We'll then send you an invoice. After the amount is paid onto our account we send you a
URL from where you can download the full version of ConfigChecker.

5.3.2. Pricing

Number of Licenses Price w/o VAT Price incl. 19.0% VAT

1-5 198.00 EUR 229.68 EUR

6-10 180.00 EUR 208.80 EUR

11-100 160.00 EUR 185.60 EUR

101-unlimited 150.00 EUR 174.00 EUR

5.4. Instructions Editor

5.4.1. Eclipse Plugin

This version of the ConfigChecker instructions editor was created for Eclipse 3.1 up to 3.5.x.

Download ConfigChecker Instructions Editor V2.3.0

ConfigChecker

Page 41
Copyright © 2005-2014 Caprica Limited All rights reserved.

	1 Home
	1.1 ConfigChecker
	1.1.1 Introduction

	1.2 ConfigChecker - History of Changes
	1.2.1 Version 2.0
	1.2.2 Version 1.0

	2 Guides
	2.1 ConfigChecker
	2.1.1 Guides

	2.2 ConfigChecker - Install Guide
	2.2.1 Installation
	2.2.2 Start Script Shell Generator

	2.3 Usage
	2.3.1 Command-line Parameters

	3 References
	3.1 Instruction File Reference
	3.2 Variables
	3.2.1 Variables
	3.2.1.1 Variables as Placeholder
	3.2.1.2 Checking the Values of Variables
	3.2.1.3 Variable Names
	3.2.1.4 Predefined Variables
	3.2.1.5 Scope of Variables
	3.2.1.6 Ways to set Variables

	3.3 Control Commands
	3.3.1 Control Commands
	3.3.1.1 Include
	3.3.1.1.1 Attribues
	3.3.1.1.2 Examples

	3.3.1.2 ForEach
	3.3.1.2.1 Attribues
	3.3.1.2.2 Examples

	3.3.1.3 ForFiles
	3.3.1.3.1 Attribues
	3.3.1.3.2 Examples

	3.3.1.4 Set
	3.3.1.4.1 Attribues
	3.3.1.4.2 Examples

	3.3.1.5 SetFrom
	3.3.1.5.1 Attribues
	3.3.1.5.2 Examples

	3.3.1.6 SetFromFile
	3.3.1.6.1 Attribues
	3.3.1.6.2 Examples

	3.4 Report Commands
	3.4.1 Report Commands
	3.4.1.1 ReportBlock
	3.4.1.1.1 Attribues
	3.4.1.1.2 Examples

	3.4.1.2 ReportVariable
	3.4.1.2.1 Attribues
	3.4.1.2.2 Examples

	3.4.1.3 ReportValue
	3.4.1.3.1 Attribues
	3.4.1.3.2 Examples

	3.5 Assertion Commands
	3.5.1 Common Attributes
	3.5.2 Common Child Elements for Multiple Values
	3.5.3 Commands
	3.5.3.1 AssertEquals
	3.5.3.1.1 Attributes
	3.5.3.1.2 Example

	3.5.3.2 AssertLess
	3.5.3.2.1 Attributes
	3.5.3.2.2 Example

	3.5.3.3 AssertGreater
	3.5.3.3.1 Attributes
	3.5.3.3.2 Example

	3.5.3.4 AssertLessOrEqual
	3.5.3.4.1 Attributes
	3.5.3.4.2 Example

	3.5.3.5 AssertGreaterOrEqual
	3.5.3.5.1 Attributes
	3.5.3.5.2 Example

	3.5.3.6 AssertExistence
	3.5.3.6.1 Attributes
	3.5.3.6.2 Example

	3.5.3.7 AssertMatch
	3.5.3.7.1 Attributes
	3.5.3.7.2 Example

	3.5.3.8 AssertContains
	3.5.3.8.1 Attributes
	3.5.3.8.2 Example

	3.5.3.9 AssertOneOf
	3.5.3.9.1 Attributes
	3.5.3.9.2 Examples

	3.5.3.10 AssertMatchOneOf
	3.5.3.10.1 Attributes
	3.5.3.10.2 Examples

	3.5.3.11 AssertMatchAll
	3.5.3.11.1 Attributes
	3.5.3.11.2 Examples

	3.5.3.12 AssertNewLine
	3.5.3.12.1 Attributes
	3.5.3.12.2 Example

	3.6 Data Source Adapter Commands
	3.6.1 Data Source Adapter Commands
	3.6.1.1 SettingsFile
	3.6.1.1.1 Attribues
	3.6.1.1.2 Example

	3.6.1.2 TextFile
	3.6.1.2.1 Attribues

	3.6.1.3 XmlFile
	3.6.1.3.1 Attribues
	3.6.1.3.2 Element Syntax

	3.6.1.4 HttpdConfFile
	3.6.1.4.1 Attribues
	3.6.1.4.2 Element Syntax
	3.6.1.4.3 Example

	3.6.1.5 LdifFile
	3.6.1.5.1 Attribues
	3.6.1.5.2 Element Syntax
	3.6.1.5.3 Example

	3.6.1.6 FileSystem
	3.6.1.6.1 Attribues
	3.6.1.6.2 Extra Command Attribues
	3.6.1.6.3 Example

	4 Examples
	4.1 Examples
	4.1.1 Tomcat 5 Environment

	5 Try and Buy
	5.1 How to get ConfigChecker
	5.1.1 Trial Version
	5.1.2 Full Version
	5.1.3 Instruction File Editor (Eclipse Plugin)

	5.2 Trial Version
	5.2.1 V2.2.0

	5.3 Full Version
	5.3.1 Buy the full version of ConfigChecker
	5.3.2 Pricing

	5.4 Instructions Editor
	5.4.1 Eclipse Plugin

